ScreenYu Gyn® Basic UDI-DI: 426076785SCREENYUGYNP6 # Instructions for use | REF | |-----| | | Σ **UDI-DI** SG001-46 Up to 46 samples 4260767852212 Please read these instructions for use carefully before using the test and follow them carefully to ensure the reliability of the results. To be used for in vitro diagnostics (IVD) by trained personnel only. Revision 7 (2025-08) Translation released 2025-08 #### **S**TORE IMMEDIATELY AFTER DELIVERY The ScreenYu Gyn® Kit is shipped at room temperature and the temperature measuring mark is used to monitor whether the validated temperature interval is exceeded. Immediately after receipt, check the temperature measuring mark attached to the kit and confirm whether the colour has changed. Also check the outer packaging, seal and primary packaging and confirm they are not damaged. The kit must be refrigerated immediately upon receipt at a temperature between 2 °C and 8 °C, and protected from light. If transported and stored properly, the ScreenYu Gyn® Kit and its components can be used until the stated date. #### Monitoring the transport temperature The temperature measuring mark attached to the ScreenYu Gyn® Kit monitors temperature during transport. A light silver mark indicates that the kit was delivered in compliance with the transport temperature. A black mark proves non-compliance with the specified transport temperature, which means that the performance parameters of the ScreenYu Gyn® Kit can no longer be guaranteed. In this case, please contact Epitype GmbH. #### **TABLE OF CONTENTS** | 1 | Purpose | 4 | |-------|---|----| | 2 | Clinical significance | | | 3 | Test principle | 4 | | 4 | ScreenYu Gyn® Assay Design | 5 | | 4.1 | ScreenYu Gyn® Strips | 5 | | 4.2 | Controls | 5 | | 4.2.1 | Quality control bisulfite treatment (control marker ACTB) | 5 | | 4.2.2 | Positive control | 5 | | 4.2.3 | Negative control | 6 | | 5 | Reference material | 6 | | 6 | Kit contents | 6 | | 7 | Consumables and equipment (not included in the Kit) | 7 | | 8 | Storage and shelf-life | 8 | | 9 | Safety instructions | 8 | | 9.1 | General information | 8 | | 9.2 | Room layout | 9 | | 9.3 | Avoiding contamination | 9 | | 9.4 | Handling instructions | 9 | | 10 | Disposal | 10 | | 11 | ScreenYu Gyn® procedure | 11 | | 11.1 | Workflow | 11 | |--------|--|----| | 11.2 | Sampling | 11 | | 11.3 | Sample preparation | 12 | | 11.4 | Bisulfite treatment of samples | 12 | | 11.5 | PCR | 13 | | 11.5.1 | Preparation and pipetting of the PCR | 13 | | 11.5.2 | Performing the PCR on the cobas z 480 Analyzer | 14 | | 11.5.3 | Performing the PCR on the CFX96 Real-Time PCR Detection System | 19 | | 12 | ScreenYu Gyn® performance | 23 | | 12.1 | Analytical performance | 23 | | 12.1.1 | Analytical sensitivity | 23 | | 12.1.2 | Analytical specificity – detection of unmethylated DNA | 24 | | 12.2 | Precision | 25 | | 12.2.1 | Repeatability | 25 | | 12.2.2 | Reproducibility | 25 | | 12.3 | Accuracy | 25 | | 12.4 | Precision | 25 | | 12.5 | Robustness | 25 | | 12.6 | Cut-off | 25 | | 12.7 | Clinical performance evaluation | 26 | | 13 | Limits of the procedure | 27 | | 14 | References | 27 | | 15 | Liability | 27 | | 16 | Questions and problems | 28 | | 17 | Additional notes | 28 | | 18 | Meaning of the symbols | 28 | | 19 | List of changes | 29 | | 20 | Short protocol | 29 | #### 1 PURPOSE ScreenYu Gyn® is an in vitro diagnostic kit for the qualitative detection of a human epigenetic marker in bisulfite-converted DNA from cervical samples of women with a positive HPV test result or with an abnormal Pap test finding pending clarification. A positive ScreenYu Gyn® result is associated with the presence of cervical intraepithelial neoplasia or cervical cancer. ScreenYu Gyn® is intended for use only by qualified laboratory personnel familiar with molecular biology techniques. The interpretation of the results should always be carried out in conjunction with results of further laboratory diagnostic procedures, as well as taking into account the clinical picture. #### 2 CLINICAL SIGNIFICANCE Cervical cancer is the fourth most common cancer in women worldwide, with > 600,000 new cases annually [1]. In virtually all cases, persistent infection with a carcinogenic human papillomavirus (HPV) is the underlying cause [2] and a prerequisite for the development of cervical cancer. HPV-negative women have an extremely low risk of developing cervical cancer, but even most women with an HPV infection do not develop a precancerous stage. Only about 15% of women infected with HPV actually develop a precancerous stage or carcinoma that requires treatment [3]. Patients with a positive HPV test result and/or with Pap findings pending clarification (Pap II, Pap III and Pap IIID1 and D2) are therefore recommended to use a triage test such as ScreenYu Gyn®, to determine the probability of the presence of a cancer or its precursor with high accuracy. ScreenYu Gyn® should not be considered as the final therapeutic decision and must be analysed in conjunction with other medical findings. #### 3 TEST PRINCIPLE ScreenYu Gyn® is based on the detection of an epigenetic biomarker, i.e., the methylation of a specific DNA section, the presence of which corresponds to the presence of precancerous lesions or cervical cancer [4, 5, 6]. In addition, a bisulfite-specific reference marker is analysed. The marker regions used are shown in the table below. #### Overview of marker regions | Designation in the protocol | Marker region
(gene designation) | Fluorescent dye | |-----------------------------|-------------------------------------|-----------------| | Methylation marker | ZNF671 | ROX | | Control marker | ACTB | FAM | Detection is performed using the highly sensitive probe-based Real-Time PCR method. The output of the Real-Time instruments is the Cp value (Cross point, cobas z 480 Analyzer) or Cq value (Cycle quantification, CFX96 Real-Time PCR Detection System), both of which correspond to the Cycle threshold Ct value and are also referred to as such below. This value corresponds to the cycle in a Real-Time PCR in which fluorescence rises above a defined threshold value for the first time. The analysis of a patient sample using ScreenYu Gyn® involves two steps. First, DNA from the cervical smear is converted by bisulfite and methylation is fixed. In the second step, the eluted, bisulfite-treated DNA is analysed in a methylation-specific, probe-based Real-Time PCR. The originally methylated DNA section is selectively amplified using the primers in the ScreenYu Gyn® Strips. The detection of the methylation and control marker is performed using probes labelled with fluorescent dyes. In addition, a positive and a negative control are included to confirm the PCR. Subsequently, the assay-specific analysis is performed. The Sampling and the bisulfite Kit are not part of the ScreenYu Gyn® Kit. Products specifically designed for sampling and bisulfite treatment are available separately. #### Test principle - A: The gynaecologist takes a smear from the patient's cervix using a suitable sampling kit. - **B**: The diagnostic laboratory performs bisulfite treatment on the patient sample. - **C:** One duplex-PCR reaction is performed per sample. The analysis is performed by detecting the dye-labelled probes contained in the ScreenYu Gyn® Strip. #### 4 SCREENYU GYN® ASSAY DESIGN #### 4.1 ScreenYu Gyn® Strips ScreenYu Gyn® is a TaqMan probe-based assay. A ScreenYu Gyn® Strip is an 8-well PCR strip containing two primer pairs in each well, as well as an associated probe for amplification of the methylation-specific marker ZNF671 and the control marker ACTB. One well of a ScreenYu Gyn® Strip is required for the analysis of a patient sample. #### 4.2 Controls The design of the ScreenYu Gyn® Kit includes three controls to monitor the sample quality and the bisulfite treatment (ACTB marker) as well as the quality of the PCR reaction (positive control and negative control). #### 4.2.1 Quality control bisulfite treatment (control marker ACTB) This control marker verifies the successful conversion of all non-methylated cytosines to uracil and thus the quality of the bisulfite treatment performed. Detection is performed by amplification of a DNA fragment close to the human gene beta-Actin (ACTB). If there is no ACTB amplification with a Ct value below 32, the assay of the sample is considered invalid and must be repeated. #### 4.2.2 Positive control The positive control monitors the quality of the PCR. The amplification of the ScreenYu Gyn® Positive Control (PC) should provide a Ct value below 38 for both the methylation marker and the control marker. Otherwise, the PCR is invalid and must be repeated. #### 4.2.3 Negative control The negative control is a control reaction with ScreenYu Gyn® Water (NTC – No Template Control) as a template, which must be negative in both markers. If Ct values occur in the negative control, contamination is very likely and the ScreenYu Gyn® assay must be repeated. #### 5 REFERENCE MATERIAL No international reference material is available. #### 6 KIT CONTENTS Contents of the ScreenYu Gyn® Kit | Designation of components | Symbol | Content | Volume/Quantity
SG001-46 | |-----------------------------------|------------------|---------------------------------|-----------------------------| | ScreenYu Gyn® Mastermix | PCR-MM | PCR Mastermix ¹ (2x) | 1 x 0.55 ml | | ScreenYu Gyn® Strips | STRIPS | PCR strip ² | 6 Strips | | ScreenYu Gyn® Caps | CAPS | Cap for Strip | 6 Caps | | ScreenYu Gyn® Positive
Control | CONTROL + | Positive control | 1 x 90 μl | | ScreenYu Gyn® Water | H ₂ O | Water | 1 X 2 ml | | Instructions for use | - | Instructions for use | 1 | ¹Contains all components required for the polymerase chain reaction (PCR), except primers, probes and template. ² Contains the primers and probes required for
PCR. # 7 CONSUMABLES AND EQUIPMENT (NOT INCLUDED IN THE KIT) ScreenYu Gyn® may only be used together with the listed consumables and equipment and only by qualified personnel. All required laboratory equipment must be installed, calibrated, handled and maintained according to the manufacturer's instructions. Room temperature is defined as between 15 °C and 30 °C. #### Required equipment | Equipment | Catalogue no. | Company | |--|---------------------|---------------------------| | EZ DNA Methylation-Lightning Kit (CE IVD) | D5030-E,
D5031-E | Zymo Research Europe GmbH | | PCR microcentrifuge tube PP, o.1 ml, without cap, low profile, 8-well strip, white, np pcr ready * | 04-032-0556 | Nerbe plus GmbH & Co. KG | | Cap for PCR microcentrifuge tubes PP, 0.1 ml & 0.2 ml, flat, 8-cap strip, highly transparent, np pcr ready * | 04-043-0500 | Nerbe plus GmbH & Co. KG | | ThinPrep® PreservCyt® Solution (20 ml) | - | Hologic, Inc. | | Cervex-Brush® or Cervex-Brush® Combi | - | Rovers Medical Devices | To be used as Balance Strips in PCR, see plate layout on page 15 or page 19. The following laboratory equipment and consumables are required to perform the ScreenYu Gyn® assay. - Centrifuge for 0.5 ml/1.5 ml reaction tubes, ≥ 10,000 xg - Centrifuge for PCR strips - Thermal cycler for 0.5 ml reaction tubes - Vortex mixer / shaker - Pipettes with different volume ranges and associated filter tips (sterile, DNase-free) - Reaction tube stand for 0.5 ml/1.5 ml/2 ml reaction tubes - 96-well rack for PCR strips - Reaction tubes for 0.5 ml/1.5 ml (DNase-free) - Ethanol 96 100%, undenatured - Real-time PCR device, detection channels for probe dyes FAM and ROX ScreenYu Gyn® has been validated on the following real-time PCR devices: - cobas z 480 Analyzer (Roche Diagnostics GmbH) with 96-well-block, adapter for PCR strips and LightCycler® 480 Software UDF 2.0.0 (Service Pack 3), evaluation with version 1.5.1.62 - CFX96 Touch Real-Time PCR Detection System (Bio-Rad Laboratories, Inc.) with CFX Maestro Software version 2.3 #### 8 STORAGE AND SHELF-LIFE If transported and stored properly, the ScreenYu Gyn® Kit and its components can be used until the stated date. All reagents contained in the kit are stable until the indicated expiry date after opening, if stored under the indicated conditions and protected against contamination. Storage temperature of the ScreenYu Gyn® Kit and equipment not included in the kit | Equipment | Storage temperature | |---|---------------------| | ScreenYu Gyn® Kit | 2 °C to 8 °C | | EZ DNA Methylation-Lightning Kit (CE IVD) | 15 °C to 30 °C | | ThinPrep® PreservCyt® Solution (20 ml) | 15 °C to 30 °C | | Cervex-Brush® or Cervex-Brush® Combi | 15 °C to 30 °C | #### 9 SAFETY INSTRUCTIONS #### 9.1 General information When establishing state-of-the-art molecular biology methods, the instructions below must be followed closely to ensure maximum safety for laboratory personnel and to achieve high-quality results: - As it involves molecular biology processes, such as bisulfite treatment, amplification, and the detection of DNA, this kit is intended only for in vitro diagnostics and should be used only by personnel trained in laboratory practices for in vitro diagnostic. - Before using the product, read the instructions for use thoroughly. Only the current version is to be taken into account. - Wear a suitable lab coat, disposable gloves and, if necessary, safety goggles for each step. - Avoid direct contact with the biological samples, as well as splashing or spraying of the samples. - The heated lid and incubation block of the thermal cycler can reach temperatures of up to 110 °C. There is a risk of skin burns. Please observe the operating instructions of the device. - Wash your hands thoroughly after handling samples and reagents. - Do not use ScreenYu Gyn® if the reagent packaging is damaged. Contact your distributor. - Do not use the ScreenYu Gyn® Kit after the expiry date and do not use expired reagents. - Do not mix reagents from different batches and do not mix kit reagents with reagents from other manufacturers. - Use only materials supplied with the kit or recommended by the manufacturer. - All required laboratory equipment must be installed, calibrated, handled and maintained according to the manufacturer's instructions. - Pipetting small volumes of liquid within the microlitre range requires practice. Make sure you pipette the required volumes with the micropipettes as precisely as possible. - The applicable regulatory requirements for the operator must be complied with. - Adherence to Good Laboratory Practice (GLP) as outlined, for example, by the U.S. Food and Drug Administration (FDA) or the Organisation for Economic Co-operation and Development (OECD) is assumed. Specifically, recommendations for performing molecular amplification testing should be considered. The proper functioning of the PCR devices is only guaranteed at room temperature. #### 9.2 Room layout Due to the high analytical sensitivity of PCR, strict attention should be paid to maintaining the purity of the kit components and samples. PCR multiplies sections of the DNA in the sample millions to billions of times. Even the smallest amounts of these PCR products (e.g. also spread as aerosol) can lead to a false result if they are carried over into the sample material, into the reagents for bisulfite treatment or into the PCR reagents of this kit. A clean and well-structured workflow is therefore crucial to prevent incorrect results. To this end, it is necessary to separate the laboratory areas for pre-PCR and post-PCR from each other. Separate equipment, consumables, lab coats and gloves should be available in each area. Never transfer lab coats, gloves or equipment from one area to the other. The figure below shows an example of a laboratory divided into two separate rooms. One area is designated only for bisulfite treatment and preparation of PCR, while in the other area the PCR is carried out. #### Spatial division The bisulfite treatment of the samples as well as the entire PCR preparation are performed in Room 1 (the use of a PCR Hood is optimal). In Room 2, the PCR is carried out, detected and analysed. #### 9.3 Avoiding contamination - Lab coats and disposable gloves must be worn during all steps. - Disposable gloves should be changed frequently and always after (suspected) contamination with reagents or sample material. - All surfaces, equipment, and supplies must be decontaminated with a suitable cleaning solution (DNA-destroying agents). - Do not touch the inside of the reaction tubes or their caps. - When pipetting, filter tips (free of DNase, RNase and human DNA) must always be used to exclude cross-contamination via aerosols generated during pipetting. Tips should always be changed between pipetting steps. - It is important to perform negative controls to detect possible contamination. #### 9.4 Handling instructions - Store the unused components in the original packaging until used. - All centrifugation steps should be performed at room temperature. - The workflow can be interrupted after the bisulfite treatment. At this point, the samples can be stored for one week at 2 °C to 8 °C or up to two months at –15 °C to –30 °C. - The ScreenYu Gyn® Strips and ScreenYu Gyn® Caps should not be touched without disposable gloves throughout the entire procedure, otherwise non-specific fluorescence signals may occur. - The ScreenYu Gyn® Strips and ScreenYu Gyn® Caps are intended for single use and cannot be reused. - Keep the unused ScreenYu Gyn® Strips and ScreenYu Gyn® Caps in their original packaging. It is imperative that you keep the ScreenYu Gyn® Strips away from light. #### 10 DISPOSAL The unused ScreenYu Gyn® Kit and its components can be disposed of without further special precautions. Patient samples and used reaction tubes must be handled as infectious waste. All reagents must be disposed of in accordance with legal regulations. #### 11 SCREENYU GYN® PROCEDURE The following chapter contains a detailed description of the different steps from sampling to data analysis. #### 11.1 Workflow In total, ScreenYu Gyn® can be performed in less than four hours. The active working time is approximately 2 hours. During the initial ScreenYu Gyn® procedure, 15 minutes should be allowed for the creation of the PCR template. Timeline of the ScreenYu Gyn® workflow #### 11.2 Sampling The sampling kit is not included in the ScreenYu Gyn® Kit. ThinPrep® PreservCyt® vials (Hologic, Inc.) and Cervex-Brush® sampling devices (Rovers Medical Devices) are available by contacting the respective manufacturers. The collection of a cervical sample by the physician is to be performed in accordance with the manufacturer's instructions and in compliance with the generally accepted guidelines for the collection of a cervical smear sample [7]. **Important:** The brush head of the sample collection device should not remain in the sample container after collection, otherwise the performance of ScreenYu Gyn® will be impaired. ThinPrep® PreservCyt® Solution must be used as the smear medium. The use of other sample media was not part of the validation of the ScreenYu Gyn® assay. Ensuring the good quality of the employed DNA sample is an important prerequisite for the validity of the assay. Improper sampling, bisulfite treatment, and DNA storage may lead to invalid or even false negative results. Cervical samples can be transported to the laboratory for testing without refrigeration. Samples can be stored for up to 1.5 years at temperature 2 °C to 30 °C. #### 11.3 Sample preparation The following steps must be carried out in the sample preparation area (Room 1). **Important:** If the brush head of the swab collection brush is inside the sample vial, it must first be removed and discarded. - Vortex all patient samples
for 5 seconds at maximum speed and immediately transfer 1 ml of the medium to a 1.5 ml reaction tube. - **Caution:** The cells settle back to the bottom of the tube very quickly. No more than 10 seconds should elapse between mixing the patient sample and taking the 1 ml sample! - Centrifuge the samples for 5 minutes at 10,000 xg. - Carefully remove 900 µl supernatant above the pellet without destroying the pellet. - Caution: Depending on the nature of the sample, the pellet is more or less solid. - Resuspend the pellet by vortexing for 3 seconds. Add 20 μ l of the resuspended sample to the bisulfite treatment. Discard the remaining 80 μ l. #### 11.4 Bisulfite treatment of samples The bisulfite kit is not included in the ScreenYu Gyn® Kit. ScreenYu Gyn® was validated with the EZ DNA Methylation-Lightning Kit (Zymo Research Europe GmbH). - Input: Add 20 μl of the resuspended sample + 130 μl of Lightning Conversion Reagent to a 0.5 ml reaction tube. - perform bisulfite treatment according to the manufacturer's instructions of the EZ DNA Methylation-Lightning Kit, except for the following modifications: - Discard the flow through after the last wash step. - Centrifuge the column in the empty Collection Tube for 1 minute at full speed to dry it completely. **Attention:** Do not skip this step, since residual Ethanol may impair performance of the ScreenYu Gyn® assay. • Elute in 15 μl of M-Elution Buffer for 30 seconds at 8,000 xg. #### 11.5 PCR Before starting the PCR, ensure that the PCR temperature protocol is programmed into the appropriate real-time PCR device to minimise the time between preparation and PCR start. To establish the PCR programme on the cobas z 480 Analyzer, proceed as described on page 14. The explanation for PCR on the CFX96 Real-Time PCR Detection System can be found on page 19 onwards. #### 11.5.1 Preparation and pipetting of the PCR **Important:** PCR preparation and pipetting should not take longer than 60 minutes. This step is performed in Room 1 (pre-PCR area). Please note the plate layout described on page 15 or 19 respectively. The positive control (PC) must be pipetted in well A1 and the negative control (NTC) in well B1. - Remove the **ScreenYu Gyn® Mastermix** and the required number of **ScreenYu Gyn® Strips** from the kit and place them on a 96-well rack. - **Caution:** One **ScreenYu Gyn® Strip** is sufficient for eight PCR assays. Please note that a positive control and a negative control (water, NTC) must be carried out for each PCR run. - Vortex the ScreenYu Gyn® Mastermix for 3 seconds at maximum speed and centrifuge it off. - Remove the **PCR caps** from the ScreenYu Gyn® Strips and **discard** them. - Add 10 μl of ScreenYu Gyn® Mastermix to each well of the ScreenYu Gyn® Strip. - Vortex the sample eluate for 3 seconds at maximum speed and centrifuge briefly. - Add 10 μl of the sample to the well filled with ScreenYu Gyn® Mastermix. - **Important:** Change the pipette tip for each pipetting step. - **Note:** Keep the rest of the sample eluates for a repetition of the ScreenYu Gyn® PCR if necessary. - Vortex the **ScreenYu Gyn® Positive Control** for 3 seconds at maximum speed and centrifuge it off. - Add 10 μl of ScreenYu Gyn® Positive Control to well A1 and 10 μl of ScreenYu Gyn® Water to well B1 as a negative control. - Close each ScreenYu Gyn® Strip with an unused ScreenYu Gyn® Cap (transparent bag). - Caution: Do not touch the inside of the ScreenYu Gyn® Strips and ScreenYu Gyn® Caps. Make sure that the ScreenYu Gyn® Cap is properly seated on the ScreenYu Gyn® Strip after closing. Verification is best carried out via visual inspection from the side. #### Caution: Do not label the part of the caps that is directly above the wells, as the PCR signal is read from above through the caps and this would thus lead to incorrect fluorescence signals. The large latch at the top and bottom of the cap can be used for labelling. Vortex all closed ScreenYu Gyn® Strips for 3 seconds at maximum speed and centrifuge them off. #### 11.5.2 Performing the PCR on the cobas z 480 Analyzer The following section outlines how to perform the ScreenYu Gyn® on the Real-Time PCR systems cobas z 480 Analyzer (marked blue) and CFX96 Real-Time PCR Detection System (marked green). However, always follow the manufacturer's instructions for operating PCR devices. The PCR is to be carried out in Room 2. #### 11.5.2.1 Creating a PCR template If you created and saved the PCR template earlier, you can continue with 11.5.2.2 Starting the PCR - Turn on the cobas z 480 Analyzer and its computer. Within 15 seconds, select "User defined Workflow" on the computer screen in the BIOS to switch to a freely programmable device mode. - Open the software and log in. - Select "Tools" in the action bar on the right and create a new *Detection Format*. Name it ScreenYu Gyn. Select the filter combination 465-510 and 540-610 (Excitation-Emission). Close the window by clicking the *Close* button. - Select New Experiment to create a new template. In the tab Run Protocol, set the Detection Format to ScreenYu Gyn and set the Reaction Volume to 20 µl. Program the temperature protocol according to the table below. PCR temperature protocol on the cobas z 480 Analyzer | Programme
Name | Number of cycles | Analysis
Mode | Target | Acquisition
Mode | Hold
(hh:mm:ss) | Ramp
rate (°C/s) | |-------------------|------------------|------------------|--------|---------------------|--------------------|---------------------| | Initialization | 1 X | None | 94 °C | None | 00:01:00 | 4.4 | | Amplification | , 2 V | Quantification | 94 °C | None | 00:00:15 | 4.4 | | Amplification | 42 X | Quantinication | 61 °C | Single | 00:00:30 | 2.2 | | Cooling | 1 X | None | 37 °C | None | 00:01:00 | 2.2 | - Save the run template under the name ScreenYu Gyn by selecting *Apply Template* → *Save as Template* and storing the template in the desired location. #### 11.5.2.2 Starting the PCR run If you saved the PCR template earlier, you can now access it by clicking on *New Experiment from Template* > ScreenYu Gyn. Check that the correct temperature protocol is set. - Depending on the plate layout, select a *Subset Template* in the *Subset Editor*. To do this, press the "+" button, select all occupied wells in the layout and confirm the template with the *Apply* button. This *Subset Template* can be saved at the desired location via *Apply Template* → *Save as Template*. - Select a suitable plate layout: | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |---|-----|---------------|---------|---------|---------|---------|---------|---------|---------------|---------|---------|-----------| | Α | PC | | | | | | | | | | | | | В | NTC | | | | | | | | | | | | | C | 1 | rip | Strip | Strip | Strip | Strip | Strip | Strip | rip | Strip | Strip | Strip | | D | 2 | e St | | e St | | Ε | 3 | Balance Strip | Balance Strip | Balance | Balance | Balance : | | F | 4 | Bal | G | 5 | | | | | | | | | | | | | Н | 6 | | | | | | | | | | | | Example of plate layout for 6 patient samples (1-6) Analysis of an incompletely occupied plate is performed by means of a defined subset in the Subset Editor. | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |---|-----|----|----|----|----|----|---------|--------|--------|--------|--------|---------| | Α | PC | 7 | 15 | 23 | 31 | 39 | | | | | | | | В | NTC | 8 | 16 | 24 | 32 | 40 | | | | | | | | C | 1 | 9 | 17 | 25 | 33 | 41 | Strip | Strip | Strip | Strip | Strip | Strip | | D | 2 | 10 | 18 | 26 | 34 | 42 | | e St | | | | | | Ε | 3 | 11 | 19 | 27 | 35 | 43 | Balance | alance | alance | alance | alance | Balance | | F | 4 | 12 | 20 | 28 | 36 | 44 | Bal | Bal | Bal | Bal | Bal | Bal | | G | 5 | 13 | 21 | 29 | 37 | 45 | | | | | | | | Н | 6 | 14 | 22 | 30 | 38 | 46 | | | | | | | Example of plate layout for 46 patient samples (1-46) Analysis of an incompletely occupied plate is performed by means of a defined subset in the Subset Editor. **Important:** The plate layout is <u>not</u> variable. The positive control (PC) must be positioned in well A1 and the negative control (NTC) in well B1. Empty positions should be filled with empty strips (Balance Strips) for balancing, see Chapter 7. - Define the sample labelling in the Sample Editor by selecting a defined subset template at Step 2: Select Samples → Subset and entering the Sample Name at Step 3: Edit Properties. This sample template can be saved at the desired location via Apply Template → Save as Template. - Place the strips vertically into the PCR device in the defined order. - Important: Use the adapter for PCR strips (by Roche Diagnostics GmbH). - Save the PCR run under a unique name in the desired folder by pressing the "floppy disk" button (on the right side of the action bar) and start the PCR run by clicking on the button *Start Run* in the tab *Run Protocol* (*Experiment Editor*). #### 11.5.2.3 Exporting the data If you are analysing the PCR run directly on the cobas z 480 Analyzer computer, please continue with 11.5.2.4 Analysing the PCR data. - After completion of the PCR (*Run complete*), export the PCR run via Export" and save the file to the desired location. #### 11.5.2.4 Analysing the PCR data The following describes the analysis of the exported data. These instructions have been created using the Microsoft Excel spreadsheet programme. It is also possible to use other suitable programmes. - If you have exported the PCR run, start the LightCycler® 480 software on another computer and open/import the PCR run. Otherwise, perform the analysis on the computer of the cobas z 480 Analyzer. - Under *Analysis*, select the analysis algorithm *Abs Quant/Fit Points* and the specified subset, if necessary. - In the tab Cycle Range, set the following parameters: First Cycle 1, Last Cycle 42 and the Background to 5 to 20, by setting a Min Offset of 4 and a Max Offset of 19. - In the *Noise Band* tab, check that the *STD Multiplier* is set to 12 and the *Noise
Band* is calculated automatically. - Due to the detection of two different fluorescent dyes, the analysis of the PCR data is performed separately for each marker. The respective detection channel is selected via the button *Filter Comb*: #### Filter combinations and threshold settings on the cobas z 480 Analyzer | Marker | Detection channel | Probe | Threshold | |--------|-------------------|-------|-----------| | ACTB | 465 – 510 | FAM | 1.2 | | ZNF671 | 540 – 610 | ROX | 0.5 | - In the Analysis tab, check that the number of Fit Points is set to 2. - Set the *Threshold* for **ACTB** to **1.2** and press the *Calculate* button to perform the analysis. Export the data table as a .txt file by right-clicking *Export Table* under *Samples* and save it in a suitable location under a unique name. - Then set the *Threshold* for **ZNF671** to **o.5** and press the *Calculate* button to perform the analysis. Export the data table as a .txt file by right-clicking *Export Table* under *Samples* and saving it in a suitable location under a unique name. **Caution:** Always analyse the two markers one after the other as described, since the programme always applies manually-set threshold values to all filters. - Open a spreadsheet programme such as Microsoft Excel and copy all data from both .txt files, both for ZNF671 marker (Selected Filter: 540-610) and for the ACTB marker (Selected Filter: 465-510), into it. - Format the data so that the results of the different samples are displayed one below the other and the ZNF671 and ACTB markers are displayed side by side. | Pos | Name | Cp ZNF671 | Ср аств | ΔCp _{ZNF671-ACTB} | |----------------|----------|-----------|---------|----------------------------| | A ₁ | PC | 31.98 | 32.12 | | | B1 | NTC | | | | | Cı | Sample 1 | | 36.22 | | | D1 | Sample 2 | 36.39 | 30.22 | 6.17 | | E1 | Sample 3 | | 31.50 | | | F1 | Sample 4 | | 31.27 | | | G1 | Sample 5 | 31.61 | 30.32 | 1.29 | | H1 | Sample 6 | | 31.21 | | #### Checking the validity of the PCR run The PCR run is valid if the positive and negative control meet the following criteria: #### Validity criteria of the ScreenYu Gyn® controls | Marker | Cp value for positive control | Cp value for negative control | |--------|-------------------------------|-------------------------------| | ZNF671 | ≥ 20; ≤ 38 | no value | | ACTB | ≥ 20; ≤ 38 | no value | #### Checking the validity of the samples The result of the patient sample is valid if the control marker ACTB meets the following criterion: #### Validity criteria of the patient sample | Marker | Cp value for patient sample | |--------|-----------------------------| | АСТВ | ≥ 20; ≤ 32 | #### Analysis of the ScreenYu Gyn® Assay If the methylation marker ZNF671 - Does not yield a Cp value, the **ScreenYu Gyn® result** for this sample will be considered **negative**. - Yields a Cp value > 0; < 20, the **ScreenYu Gyn® result** for this sample will be considered **invalid**. - Yields a Cp value \geq 20; \leq 42, the Δ Cp is calculated according to the following equation: | Calculation of ΔCp | |---------------------------------------| | $\Delta Cp = Cp_{ZNF671} - Cp_{ACTB}$ | If $\Delta Cp \leq 9.00$, the ScreenYu Gyn® result for this sample will be considered positive. If $\Delta Cp > 9.00$, the ScreenYu Gyn® result for this sample will be considered negative. A positive ScreenYu Gyn® result is associated with the presence of cervical intraepithelial neoplasia or cervical cancer. ScreenYu Gyn® should not be considered as the final therapeutic decision and must be analysed in conjunction with other medical findings. #### 11.5.3 Performing the PCR on the CFX96 Real-Time PCR Detection System #### 11.5.3.1 Creating a PCR template - Switch on the PCR device. - Program the PCR temperature protocol as described in the table below by selecting and editing the temperature steps and times. PCR temperature protocol** on the CFX96 Real-Time PCR Detection System | Programme Name | Step | Number of cycles | Temperature | Time (m:ss) | |----------------|------|------------------|--------------|-------------| | Initialization | 1 | 1 X | 94 °C | 1:00 | | | 2 | _ | 94 °C | 0:15 | | Amplification | 3* | 42 X | 61 °C | 0:30 | | | 4 | _ | GO TO Step 2 | 41 X | | Cooling | 5 | 1X | 30 °C | 1:00 | The fluorescence signal is detected via "Plate Read" during Step 3, which is symbolised by the camera symbol. - Set the reaction volume to 20 μ l and the temperature of the Lid heater to 105 °C. - Save the PCR template using the name ScreenYu Gyn. #### 11.5.3.2 Starting the PCR run If you saved the PCR template earlier, you can now access it. Check that the correct temperature protocol is set. - Place the **ScreenYu Gyn® Strips** into the PCR device by inserting them vertically into the small wells of the heating block. Select a suitable plate layout. | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |---|-----|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------| | Α | PC | | | | | | | | | | | | | В | NTC | | | | | | | | | | | | | C | 1 | Strip | D | 2 | e St | e St | | | | | | e St | e St | e St | e St | | Ε | 3 | Balance | F | 4 | Bal | G | 5 | | | | | | | | | | | | | Н | 6 | | | | | | | | | | | | Example of plate layout for 6 patient samples (1 - 6) ^{**} On the CFX96 Real-Time PCR Detection System, the default ramp rate is 5 °C/sec. This setting was used to validate this IVD test. | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |---|-----|----|----|----|----|----|---------|---------|--------|---------|--------|---------| | Α | PC | 7 | 15 | 23 | 31 | 39 | | | | | | | | В | NTC | 8 | 16 | 24 | 32 | 40 | | | | | | | | C | 1 | 9 | 17 | 25 | 33 | 41 | Strip | Strip | Strip | Strip | Strip | Strip | | D | 2 | 10 | 18 | 26 | 34 | 42 | e St | | e St | | e St | e St | | Ε | 3 | 11 | 19 | 27 | 35 | 43 | Balance | Balance | alance | Balance | alance | Balance | | F | 4 | 12 | 20 | 28 | 36 | 44 | Bal | Bal | Bal | Bal | Bal | Bal | | G | 7 | 13 | 21 | 29 | 37 | 45 | | | | | | | | Н | 6 | 14 | 22 | 30 | 38 | 46 | | | | | | | Example of plate layout for 46 patient samples (1 - 46) **Important:** The plate layout is <u>not</u> variable. The positive control (PC) must be positioned in well A1 and the negative control (NTC) in well B1. Empty positions should be filled with empty strips (Balance Strips) for balancing, see Chapter 7. - Name the run using a suitable file name. Note that *All Channels* are detected before you start the run. #### 11.5.3.3 Exporting the data - After completing the PCR, export the PCR run (.pcrd file). #### 11.5.3.4 Analysing the PCR data The following describes the analysis of the exported data. - On a computer, open the BioRad CFX Software and first set *Plate Type: BR White* under *User* → *User Preferences* → *Plate* to indicate that white plastic is used. - Import the .pcrd file. - Define the plate layout under Plate Setup View/Edit Plate. Click on the Select Fluorophores button to select the employed dyes FAM and ROX. The corresponding markers ACTB (FAM) and ZNF671 (ROX) can be selected under Target Names. Enter the name under Sample Names. - Unoccupied positions are marked and can be excluded from the analysis by checkmarking *Exclude Wells in Analysis*. - Confirm the plate layout under OK. - Set the analysis settings under *Settings*. The parameters under *Baseline Threshold* must be defined separately for each fluorophore. To this end, the markers in the *Quantification* tab must be deselected or selected. #### Analysis settings on the CFX96 Real-Time Detection System | Parameter | Setting | | | |-----------------------|--|--|--| | Cq Determination Mode | Single Threshold | | | | Baseline Setting | Baseline Subtracted Curve Fit | | | | Daseline Setting | Apply Fluorescence Drift Correction | | | | Analysis Mode | Target | | | | Cycles to Analyze | 1-42 | | | | Baseline Threshold | Baseline Cycles
→ User Defined: Begin: 5; End: 20 | | | | baseline Timeshold | Single Threshold → User Defined: 200 | | | - Select all samples and export the data for both markers at the same time as an .xlsx file in a suitable location under a unique name by right-clicking on *Export to Excel*. - Format the data so that the results of the different samples are displayed one below the other and the ZNF671 and ACTB markers are displayed side by side. | Pos | Name | Cq ZNF671 | Cq _{ACTB} | ΔCq _{ZNF671-ACTB} | |-----|----------|-----------|--------------------|----------------------------| | A1 | PC | 30.32 | 30.33 | | | В1 | NTC | | | | | Cı | Sample 1 | | 34.16 | | | D1 | Sample 2 | 35.74 | 29.23 | 6.50 | | E1 | Sample 3 | | 29.60 | | | F1 | Sample 4 | | 29.47 | | | G1 | Sample 5 | 30.61 | 28.48 | 2.13 | | H1 | Sample 6 | | 28.72 | | #### Checking the validity of the PCR run The PCR run is valid if the positive and negative controls meet the following criteria: #### Validity criteria of the ScreenYu Gyn® controls | Marker | Cq value for positive control | Cq value for negative control | |--------|-------------------------------|-------------------------------| | ZNF671 | ≥ 20; ≤ 38 | no value | | АСТВ | ≥ 20; ≤ 38 | no value | ## Checking the validity of the samples The result of the patient sample is valid if the control marker ACTB meets the following criterion: #### Validity criteria of the patient sample | Marker | Cq value for patient sample | |--------|-----------------------------| | АСТВ | ≥ 20; ≤ 32 | #### Analysis of the ScreenYu Gyn® Assay If the methylation marker ZNF671 - Does not yield a Cq value, the **ScreenYu Gyn® result** for this sample will be considered **negative**. - Yields a Cq value > 0; < 20, the **ScreenYu Gyn® result** for this sample will be considered **invalid**. - Yields a Cq value \geq 20; \leq 42, the Δ Cq is calculated according to the following equation: # Calculation of Δ Cq Δ Cq = Cq_{ZNF671} - Cq_{ACTB} If
$\Delta Cq \leq 10.00$, the ScreenYu Gyn® result for this sample will be considered positive. If $\Delta Cq > 10.00$, the ScreenYu Gyn® result for this sample will be considered negative. A positive ScreenYu Gyn® result is associated with the presence of cervical intraepithelial neoplasia or cervical cancer. ScreenYu Gyn® should not be considered as the final therapeutic decision and must be analysed in conjunction with other medical findings. #### **SCREENYU GYN® PERFORMANCE** The performance data of the CFX96 Touch Real-Time PCR Detection System are shown. In case of deviations of the data from the cobas z 480 Analyzer, these are listed separately. If the data from the cobas z 480 Analyzer are not explicitly shown, they correspond to the data shown for the CFX96 Touch Real-Time PCR Detection System. ## 12.1 Analytical performance #### 12.1.1 Analytical sensitivity The analytical sensitivity of the PCR assay was determined using methylated bisulfite-converted genomic human DNA. The respective detection limits are listed in the following table. The dilution series were tested in 9-fold determination. On average, 120 - 180 ng of DNA is used in the assay for one smear. #### Analytical Sensitivity – Part 1 | DNA used | Approximate number of cells in the assay* | ZNF671
Cq ≤ 42 | ACTB
Cq ≤ 42 | |----------|---|-------------------|-----------------| | o.2 ng | 30 cells | 9/9 | 9/9 | | o.1 ng | 15 cells | 9/9 | 9/9 | | o.o5 ng | 7.5 cells | 9/9 | 9/9 | | 0.02 ng | 3 cells | 9/9 | 9/9 | | o.o1 ng | 1.5 cells | 9/9 | 7/9 | | o.oo5 ng | <1cell | 5/9 | 3/9 | ^{*} one cell contains approx. 6 – 7 pg genomic DNA The detection limit for the two markers on the CFX96 Touch Real-Time PCR Detection System is a total of 3 cells (0.02 ng) in the total sample. On the cobas z 480 Analyzer, the detection limit for the two markers is a total of 7.5 cells (0.05 ng) in the total sample. The quantification limits of the ScreenYu Gyn® assay correspond to the detection limits, resulting in a linearity of $R^2 = 0.99$ for both markers within the quantification limits. In addition, a DNA mixture of methylated bisulfite-converted genomic human DNA and unmethylated genomic human DNA was tested. In each case, 20 ng DNA or 100 ng DNA per assay were used. The dilution series were tested in triplicate or in 9-fold determination. #### Analytical Sensitivity – Part 2 | Proportion of methylated DNA | Total DNA | ScreenYu Gyn®
positive | |------------------------------|-----------|---------------------------| | 10 % | 20 ng | 3/3 | | 1% | 20 ng | 9/9 | | 0.1 % | 20 ng | 9/9 | | 0.01% | 20 ng | 4/9 | | o % | 20 ng | 0/9 | | 10 % | 100 ng | 3/3 | | 1% | 100 ng | 9/9 | | 0.1% | 100 ng | 9/9 | | 0.01% | 100 ng | 1/9 | | o % | 100 ng | 0/9 | The detection limit for a positive result of the marker ZNF671 is 0.1 % methylated DNA for a sample containing a total of 20 ng DNA or 100 ng DNA per assay. #### 12.1.2 Analytical specificity – detection of unmethylated DNA The analytical specificity of the PCR assay was determined using unmethylated PCR fragments of 10–12 kb representing the human genome. A 5-fold determination was performed. Results are shown in the table below. The samples were classified as valid via the ACTB marker. Up to a concentration of 1,000 ng of unmethylated, bisulfite-converted DNA (biDNA), no false-positive ScreenYu Gyn® result was obtained. #### Analytical specificity of the PCR assay | DNA used | ZNF671
Cq ≤ 42 | ACTB
Cq ≤ 42 | |-----------------------------|-------------------|-----------------| | 100 ng unmethylated biDNA | 0/5 | 5/5 | | 250 ng unmethylated biDNA | 0/5 | 5/5 | | 500 ng unmethylated biDNA | 0/5 | 5/5 | | 1,000 ng unmethylated biDNA | 0/5 | 5/5 | | 1,000 ng genomic DNA | 0/5 | 0/5 | #### 12.2 Precision #### 12.2.1 Repeatability Two bisulfite-converted patient samples were tested in ten independent runs with the ScreenYu Gyn® assay (4 replicates each). In all 40 determinations, the PAP I sample had a negative ScreenYu Gyn® result and the CIN3 had a positive ScreenYu Gyn® result. Thus, the samples show 100 % repeatability. #### 12.2.2 Reproducibility At five centres, 20 patient samples were tested with ScreenYu Gyn®. Each time, a new sample preparation and bisulfite treatment was performed by different people, using different qPCR devices (cobas z 480 Analyzer, LightCycler® 480 I, CFX96 Touch Real-Time PCR Detection System). 18 out of 20 patient samples were consistent. This yields a reproducibility of 90 %. #### 12.3 Accuracy The accuracy of the ScreenYu Gyn® assay was verified via Sanger sequencing using 15 patient samples. Negatively tested patient samples showed no methylated cytosines in the respective genomic region. Positively tested patient samples showed the correct ZNF671 genomic region with a high degree of methylation within the sequence. #### 12.4 Precision The precision as the sum of precision and correctness of the ScreenYu Gyn® assay is given. #### 12.5 Robustness No interference was observed in smear samples spiked with SiHa cells when increased concentrations of the following substances were added to the sample: - up to 0.5 % Lugol's solution - up to 0.5 % acetic acid #### 12.6 Cut-off The optimal assay cut-off was determined using the so-called Youden's Index. The following criteria must be met for a positive ScreenYu Gyn® result: #### CFX96 Touch Real-Time PCR Detection System $\Delta Cq_{ZNF671-ACTB} \le 10 \rightarrow ScreenYu Gyn® result is positive$ $\Delta Cq_{ZNF671-ACTB} > 10 \rightarrow ScreenYu Gyn® result is negative$ #### Cobas z 480 Analyzer $\Delta Cp_{ZNF671-ACTB} \le 9 \Rightarrow$ ScreenYu Gyn® result is positive $\Delta Cp_{ZNF671-ACTB} > 9 \rightarrow ScreenYu Gyn® result is negative$ #### 12.7 Clinical performance evaluation The patient samples used here were obtained from European clinics (Germany, Portugal). Bisulfite treatment of patient samples with the EZ DNA Methylation-Lightning Kit was performed with a centrifugation speed of 18,000 xg and a desulphonation time of 20 minutes. For the clinical performance evaluation of ScreenYu Gyn®, 616 patient samples were examined with the following prevalence distribution of findings: Pap I (n = 380; 61.7%), CIN 1 (n = 47; 7.6%), CIN 2 (n = 50; 8.1%), CIN 3 (n = 132; 21.4%), cervical cancer (n = 7; 1.1%). Based on the established cut-off, clinical sensitivity and specificity were calculated. #### Clinical performance evaluation of ScreenYu Gyn® | Findings according to cytology / histology | Detection | CI 95 % | |--|-----------|-----------------| | Pap I (n = 380) | 9.33 % | 6.6 % - 12.7 % | | CIN 1 (n = 47) | 23.91 % | 12.6 % - 38.8 % | | CIN 2 (n = 50) | 35.42 % | 22.2 % - 50.5 % | | CIN 3 (n = 132) | 62.88 % | 54.0 % - 71.1 % | | CxCa (n = 7) | 100.00 % | 59.0 % - 100 % | | Clinical performance data
CIN 3+ / Pap I | Value | CI 95 % | |---|---------|-----------------| | Sensitivity | 64.75 % | 56.2 % - 72.7 % | | Specificity | 90.67% | 87.3 % - 93.4 % | | Positive predictive value | 72.00 % | 63.3 % - 79.7 % | | Negative predictive value | 87.40 % | 83.7 % - 90.5 % | | Positive Likelihood Ratio | 6.96 | - | | Negative likelihood ratio | 0.39 | - | CI = confidence interval #### 13 LIMITS OF THE PROCEDURE - The interpretation of the ScreenYu Gyn® results should always be carried out in conjunction with results of further laboratory diagnostic procedures, as well as taking into account the clinical picture. - The specifications according to the instructions for use, e.g., pipetting volumes, incubation times, temperatures and preparation steps must be adhered to in order to avoid erroneous results. - Proper sampling and storage are critical to test results. - In principle, it cannot be excluded in molecular biological test procedures that further very rare sequence variants could influence the test result, which are not yet covered in the sources consulted for the specificity and sensitivity analysis of the primers and probes. - Non-specification instrument performance, as well as deviations from the described test procedure, specified storage conditions, materials, equipment, or recommended sample material, may result in differences from results obtained when all specifications are met. - The provided internal and external controls are aids for the detection of faults. However, they cannot detect every possible fault. It is the user's responsibility to validate any modifications made or, if necessary, the devices used and to ensure compliance with the device specifications. #### 14 REFERENCES - [1] Sung, H. et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin 71(3):209-249 - [2] Walboomers, J. *et al.* (1999). Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. *J Pathol.* 189(1):12-19 - [3] Cuzick *et al.* (2006). Overview of the European and North American studies on HPV testing in primary cervical cancer screening. *Int J Cancer.* 119(5):1095-1101 - [4] Hansel *et al.* (2014). A Promising DNA Methylation Signature for the Triage of High-Risk Human Papillomavirus DNA-Positive Women. PLOS ONE. Volume 9, Issue 3, e91905 - [5] Schmitz *et al.* (2017). Performance of a methylation specific real-time PCR assay as a triage test for HPV-positive women. Clinical Epigenetics. 9:118 - [6] Schmitz *et al.* (2018). Performance of a DNA methylation marker panel using liquid-based cervical scrapes to detect cervical cancer and its precancerous stages. BMC Cancer. 18:1197 - [7] International Agency for Research on Cancer (2008). European guidelines for quality assurance in cervical cancer screening Second edition #### 15 LIABILITY The ScreenYu Gyn® Kit may only be used in accordance with its intended purpose. Epitype GmbH assumes no liability for any other use (e.g., non-compliance
with these operating instructions and improper use) and any resulting damage. #### 16 QUESTIONS AND PROBLEMS If you have any questions about or problems with the product, please contact your Epitype GmbH representative. You can reach Epitype GmbH's technical support from Monday to Friday between 8 a.m. and 4 p.m. under the following phone number: +49 (o) 3641 5548500 Outside of office hours, e-mail us at: support@epitype.de #### **Epitype GmbH** Moritzburger Weg 67 01109 Dresden, Germany Managing Directors: Dr Alfred Hansel, Dr Martina Schmitz, Dr. Timm Zörgiebel #### 17 ADDITIONAL NOTES - Regulatory notice to customers in the European Union: Please note your obligation to report to your competent authority and to Epitype GmbH any serious incidents that have occurred in connection with the product. - The current version of the safety data sheet for this product is provided in the Download Centre on the website (http://www.oncgnostics.com/en/downloadcenter/) or can be requested by e-mail to support@epitype.de. #### 18 MEANING OF THE SYMBOLS | Symbol | Meaning | Symbol | Meaning | |------------------|---------------------|-----------|--| | PCR-MM | Mastermix | 1 | Storage temperature | | STRIPS | PCR strips | \square | If unopened, usable until (YYYY-MM-DD) | | CAPS | Caps | Σ | Content sufficient for <n> tests</n> | | CONTROL + | Positive control | *** | Manufacturer | | H ₂ O | Water | []i | Observe instructions for use | | IVD | in vitro diagnostic | 类 | Protect from sunlight | | LOT | Lot designation | (2) | Do not reuse | | REF | Reference number | CE | CE marking | #### 19 LIST OF CHANGES | Previous version
(Release date) | Changes | |------------------------------------|---| | 6 (2025-4) | - Change of company name, address and contact details on the cover page and in chapters 15, 16 and 17 | #### 20 SHORT PROTOCOL Below you will find a template of a quick guide in the form of a checklist. Before using the Quick Start Guide, read thoroughly the instructions for use described in detail in Chapter 11, including all notes. The bisulfite kit is not included in the ScreenYu Gyn® Kit. Bisulfite treatment of samples must be performed using the EZ DNA Methylation-Lightning Kit (CE-IVD) (see Chapter 7 for reference information). | San | nples preparation | | |--------|---|--| | | Vortex patient samples for 5 tube | seconds at maximum speed and transfer 1 ml to 1.5 ml reaction | | | Centrifuge samples for 5 minu | utes at 10,000 xg | | | Remove and discard 900 µl of | supernatant above the pellet | | Bisu | ulfite treatment of samp | oles | | | Prepare EZ DNA Methylation manufacturer's instructions | n-Lightning Kit (Zymo Research Europe GmbH) according to the | | | Resuspend pellet | | | | Setup reaction in a 0.5 ml reac | ction tube, vortex and centrifuge | | Reacti | ion for the bisulfite conversion | | | Con | nponent | Per reaction | | Ligh | ntning Conversion Reagent | 130 μΙ | | Res | uspended sample | 20 μΙ | | Tota | al volume | 150 µl | | | Carry out the bisulfite treatm
Methylation-Lightning Kit and | ent according to the manufacturer's instructions for the EZ DNA d follow the additional steps: | | | Discard the flow through afte | r the last wash step | | | Centrifuge column in the emp | oty Collection Tube for 1 minute at full speed to dry it completely | | | Transfer column to 1.5 ml rea | ction tube | | | Pipette 15 μl of M-Elution Buf | fer onto column and centrifuge at 8,000 xg for 30 seconds | | Pre | paration and pipetting | of the PCR | | | Centrifuge sample | | | | Vortex and centrifuge Screen | Yu Gyn® Mastermix | | | Remove the PCR caps from th | ne ScreenYu Gyn® Strips and discard them | | | Pipette 10 μl ScreenYu Gyn® | Mastermix per well | | | Pipette 10 μl sample or Scree
(in well B1) | nYu Gyn® Positive Control (in well A1) or ScreenYu Gyn® Water | | | Close ScreenYu Gyn® Strips v | vith unused ScreenYu Gyn® Caps (transparent bag) | | | Vortex and centrifuge Screen | Yu Gyn® Strips | # **Performing the PCR** | Switch on the Real-time PCR device, open software if necessary and select ScreenYu Gy | 'n | |---|----| | Template | | Name PCR run individually, edit plate layout, check temperature protocol #### PCR temperature protocol | Programme
Name | Number of cycles | Temperature | Time
(m:ss) | |-------------------|------------------|--|----------------| | Initialization | 1 X | 94 °C | 1:00 | | Amplification | | 94 °C | 0:15 | | Amplification | 42 X | 61 °C | 0:30 | | Cooling | - 11 | 37 °C (cobas z 48o Analyzer) | 1.00 | | Cooming | 1 X | 30 °C (CFX96 Real-Time PCR Detection System) | 1:00 | Place ScreenYu Gyn® Strips and Balance Strips into the device and start PCR run # Analysis and interpretation of PCR data | | Open the exp | orted file a | and merge d | lata in a suita | able spreadsheet | programme | |--|--------------|--------------|-------------|-----------------|------------------|-----------| | | | | | | | | Format the data so that the results of the different samples are displayed one below the other and the ZNF671 and ACTB markers are displayed side by side Check the results of the positive control and negative control for both markers Analyse the result for the collected samples A sample is considered positive in the ScreenYu Gyn® assay when the following criteria are met: #### Validity and positivity criteria | PCR device | Marker | Ct value | ΔCt _{ZNF671} - ACTB | |-----------------------|--------|------------|------------------------------| | cobas z 48o Analyzer | АСТВ | ≥ 20, ≤ 32 | - | | CODAS 2 400 Allalyzel | ZNF671 | ≥ 20, ≤ 42 | ≤ 9.00 | | CFX96 Real-Time PCR | АСТВ | ≥ 20, ≤ 32 | - | | Detection System | ZNF671 | ≥ 20, ≤ 42 | ≤ 10.00 | A positive ScreenYu Gyn® result is associated with the presence of cervical intraepithelial neoplasia or cervical cancer. ScreenYu Gyn® should not be considered as the final therapeutic decision and must be analysed in conjunction with other medical findings.